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ABSTRACT

The design of a controller such that the closed-loop system will track reference
signals or reject disturbance signals from a specified class is known as the
“servomechanism problem” or the “regulator problem.” We show here that the
regulator problem can be looked at as an interpolation problem for a subspace-valued
function that can be viewed as a multivariable version of the Nyquist curve. The result

is applied to obtain a simple parametrization of all solutions. © Elsevier Science Inc.,
1997

1. INTRODUCTION

In a classical paper [13], Martin and Hermann introduced the idea of
associating to a given observable and controllable linear system with m inputs
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and p outputs a mapping from the extended complex plane into the
Grassmannian manifold of m-dimensional subspaces of (m + p)-dimensional
complex space. The idea was applied by Brockett and Bymes [4] to study
feedback stabilization and root loci. More recently, it was recognized that
subspace-valued functions offer an excellent framework to define a distance
measure between linear systems and to study robustness issues (see for
instance [15] and [17]). In this paper, we use subspace-valued functions to
study the regulator problem (sometimes also known as the servo problem),
which is one of the most widely studied problems in control theory. A
particular instance is the rejection of constant disturbances under closed-loop
stability, the study of which dates back to Maxwell [14]. Instead of attempting
to list the many contributions since, we refer the reader to [18] and [3] for
entries into the literature. In this paper, we show that the regulator problem
can be viewed as an interpolation problem for a subspace-valued function
associated to the controller.

It turns out that in the study of the regulator problem it is necessary to
extend the point of view of [13] in several ways. In the first place, since we
will be interested in stability properties, it is natural to use the closed right
half plane as a domain of definition for subspace-valued functions, rather
than the extended complex plane as a whole; the same shift of focus also
already occurred in for instance [15] and [17]. By taking the closed right half
plane as the domain of definition, it becomes natural to consider systems that
are stabilizable and detectable rather than controllable and observable. How-
ever, in the regulator problem one is dealing with nonstabilizable systems.
We shall still associate subspace-valued functions to such systems; the price
we pay is that the resulting functions will have singularities, in the sense that
at certain points the dimension of the associated subspace “jumps up.”
Another new element is introduced by the interpolation conditions. We want
to allow higher-multiplicity conditions, so that somehow derivatives should be
involved. We deal with these by a concept that we call the “blowup.”

The main results of the paper may be summarized as follows. First we
introduce subspace-valued functions associated to linear systems with the
extensions to the Martin-Hermann framework as mentioned above. Then we
give conditions for the regulator problem in terms of these subspace-valued
functions. The conditions are interpolation conditions, in the sense that they
partly specify the values of a subspace-valued function associated to the
controller at a finite number of points in the complex plane corresponding to
the characteristic frequencies of the exogenous signals specified in the
regulator problem. For the case of simple multiplicities, this partial specifica-
tion is of the form

F(N) NA(N) CF (1.1)
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where #(s) and #(s) are subspace-valued functions defined by the con-
troller and by the problem data respectively, 7 is a given subspace, and A is
a characteristic frequency. The full version (including higher multiplicities) is
given in Theorem 4.2. One important reason why one may want to write a
given problem as an interpolation problem is to obtain a parametrization of
all solutions, and we show that also in this case such a parametrization can be
obtained (Theorem 5.5). In the companion paper [6], this parametrization is
used to optimize robustness of closed-loop stability over the set of regulators.

The paper is organized as follows. A formulation of the regulator problem
as it will be considered here is given in Section 2, where we also define the
associated subspace-valued functions and discuss the description of closed-
loop stability in terms of these. In Section 3, we introduce the “blowup” and
obtain its basic properties. After these preliminaries, it is not difficult to
interpret the regulator problem as an interpolation problem, and this is done
in Section 4. The parametrization of all solutions to the regulator problem is
derived under an extra condition in Section 5.

2. PROBLEM FORMULATION AND PRELIMINARIES

We shall freely use standard terminology from the linear systems litera-
ture; for explanation, see any textbook on linear systems such as [18, 5].
Consider a finite-dimensional linear time-invariant system of the following
form:

(1) = Apnxy(t) + Apxy(t) + Bu(t), (2.1)
%y(t) = Agx,y(t), (22)
y(2) = Cixy(t) + Coxy(2). (2.3)

The interpretation is as follows: x, denotes the state of the plant, whereas x,
is the state of an “exosystem” that generates signals which can be distur-
bances or references. Typically the matrix A,, has its eigenvalues on the
imaginary axis, allowing the reference /disturbance signals to be steps, ramps,
sinusoids, etc. The variable y(¢) should converge to zero, irrespective of the
presence of the signals generated by the exosystem. This is to be achieved by
a linear time-invariant compensator of the form

2(t) = Fz(t) + Gy(t), (2.4)
u(t) = Hz(t) + Jy(t). (2.5)
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The closed-loop system takes the form

d x.,l x‘,l
m x‘~2 (1) = A, ;2 (), (2.6)
y(t=1¢, 0 ¢l = |, (2.7)

where

Ay +BJC, BH A,+BJC,
A =| cc F cc, | (2.8)
0 0 Agy

The compensator is said to satisfy the internal stability requirement if the

closed-loop system is stable when x,(¢) = 0, that is, if all eigenvalues of the
matrix

A, +B,JC, BH
Ge, F

are in the left half plane. It is said to satisfv the regulation requirement if
y(t) tends to zero for all initial values, that is, if

2.(A,) Cker[C, 0 C,]. (2.9)

where 2,(A,) denotes the unstable subspace of A,. A compensator
(2.4)-(2.5) is called a regulator if it satisfies both the internal stability
requirement and the regulation requirement (Maxwell’s term was governor
[14]). The regulator problem can now be formulated simply as the problem of
finding a regulator for the given system (2.1)—(2.3). A number of variations
and extensions of this problem have also been studied in the literature; the
formulation above is referred to as the “autonomous regulator problem” in [3,
p. 317].

The following will be standing assumptions throughout this paper. Recall
that a matrix pair (A, B) (A € R**", B € R"*™) is said to be stabilizable if
there exists an F € R™*" such that A + BF has all its eigenvalues in the
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open left half plane, or equivalently if the matrix [sI — A B] has full row rank
forall 5 wi/th Re s > 0, and that a matrix pair (C, A)(C € R?*", A € R**")
is said to be detectable if (AT, CT) is stabilizable (see for instance [5. p- 259]

ASSUMPTIONS.  The system (2.1)-(2.3) satisfies:

(A1) the pair (A,,, B,) is stabilizable;
(A2) the pair (C, A) given by

All A12

C = =
[Cl Cz]’ A 0 A22

(2.10)

is detectable;
(A3) all eigenvalues of A,, are in the closed right half plane.

Assumption (A1) is necessary for the plant to be stabilizable by a feedback
compensator, and so this is a natural assumption to make. Detectability of the
pair (C,, A,)) is necessary as well for closed-loop stability to be achieved by a
compensator of the form (2.4)-(2.5); assumption (A2) requires a bit more,
however. It can be argued that (A2) may be assumed without essential loss of
generality in the regulator problem (cf. [18, §8.1]). The final assumption (A3)
is standard; it is not interesting to consider external signals that decay to zero
(or alternatively, they may be considered as a noncontrollable but stabilizable
part of the plant). Concerning the compensator (2.4)—(2.5), we shall only
consider triples (F, G, H) that are controllable and observable, since there is
nothing to be gained by not doing so.

The following notational conventions will be used. The input and output
spaces of (2.1)—(2.3) will be denoted by % and %, with dimensions m and p
respectively. The closed right half plane will be denoted by

ct ¥seClRes >0} U} (2.11)
Finally, RH,, denotes the ring of rational functions that are analytic on C™,
i.e., proper stable rational functions.

We now introduce the subspace-valued functions associated to plant and

controller. With the plant given by the triple (A, B,, C)) we associated the

function
sl —A, 0 —B||*
= 0 S
dx s.t. [ c, 1 0 Z

s - (2]

P(e0) = im[(z)]' (2.12)
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It follows from assumptions (A1) and (A2) that dim 2(s) is equal to m for all
s with Re s > 0. With the full system (2.1)=(2.3) we associate

sl — A —Ap, 0 -B, X,

H(s) = [Z] dx,, x4 5.t 0 sl —A, O 0 X2 | =0V,
C, C, -1 0 Yy
u

M(®) = im[?w. (2.13)

The system (2.1)~(2.3) is detectable but not stabilizable, and so, although dim
#(s) = m for most points in C*, at the eigenvalues A of A,, we have dim
#()) > m. We finally associate to the controller the subspace-valued function

#(s) = {m Ezs.t.[SII—I F “]G —01][;} = o},%(oo) = imm,

u

(2.14)

which has constant dimension p on the entire extended complex plane. Note
that all functions take values in the set of subspaces of the product space
% X %, which is an (m + p)-dimensional space.

We used state-space terms above; other popular representations include,
of course, matrix fraction descriptions and the transfer matrix. In fact, Martin
and Hermann used polynomial coprime factorizations in their original paper
[13]. In our present context, factorizations over RH,, are more appropriate.
The following lemma gives the connections between various representations
(see also [8, Lemma 2.4], where an alternative proof is given).

LEMMA 2.1.  Consider a set of state-space parameters (A, B,C, D) and
assume that (A, B) is stabilizable and that (C, A) is detectable. Let
N(s)D™'(s) = D™ '(s)N(s) be respectively a right and a left coprime factor-
ization over RH,, of the transfer matrix G(s) = C(sI — A)™'B + D. Under
these conditions, one has

im[N(S)

= > -N(s)| = ¢ D er| sl — —
D(s)]_ker[D(s) N(s) [ ]k [sI-A -B] (2.15)

0 I
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fordl s € C with Re s > 0, and

N( - -
m[DEwg } = ker[ D(w) —N(x)] = im[?]. (2.16)
Proof. All functions appearing in (2.15) are continuous as mappings
from {s € C| Res > 0} to the Grassmannian manifold of m-dimensional
subspaces of % X #%; the extension indicated in (2.16) even makes all
functions continuous as mappings from the extended right half plane (includ-
ing the point at infinity) to the Grassmannian. For the state-space representa-
tion, this follows from the stabilizability and detectability assumptions (see
[8D); concerning the image and kernel representations, see [13]. For all points
s in the right half plane that are not eigenvalues of A, it is easily seen that all
entries in (2.15) are just alternative ways of writing ker{I —G(s)], so that
equality holds in these points. But since A has only finitely many eigenvalues,
equality must then by continuity hold everywhere in C*. =
If P(s) and P(s) are any matrix functions of full generic column and row
rank respectively, and

P(s) =im P(s) = ker P(s), (2.17)

then we shall call P(s) an image representation and P(s) a kernel represen-
tation of 2(s). By way of convention, we use the tilde here and below to
indicate kernel representations. As is seen from the above, kernel representa-
tions can be seen as left factorizations and image representations as right
factorizations; coprimeness corresponds to the representations having full
rank everywhere on their domains of definition. By putting the subspace-
valued functions at center stage rather than their representations, we empha-
size a geometric viewpoint.

REMARK 2.2. Note that the minimality assumptions in the lemma are
essential; it is immediately clear from dimension considerations that a sub-
space-valued function associated to a nonstabilizable system, such as .#(s) as
defined in (2.13), cannot have an image representation. Below we do con-
struct kernel representations for .#(s), however, adding some extra reqmre-
ments allowing to distinguish for instance M(s) =s from My(s) =s? if
necessary, even though ker M (s) = ker M, o(s) for all s.

REMARK 2.3. Consider a subspace-valued function #(s) = im P(s) on
the closed right half plane, where P(s) is an RH, matrix having full rank
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everywhere on C*. It can readily be seen (cf. [9]) that it is actually sufficient
to give the values of (s) on the extended imaginary axis, by the uniqueness
of analytic continuation into the right half plane. The curve (i w) traced out
as w traverses the real line may reasonably be called the Nyquist curve of
the system that gives rise to 2(s). Indeed, the usual Nyquist curve for
single-input, single-output systems is obtained via the standard identification
of the Grassmannian manifold G'(C?) with the extended complex plane by
the mapping

im[i] —s, im[(l)] — 0,

Since we start in this paper from a state-space context, we insert a lemma
about the characterization of closed-loop stability in terms of the subspace-
valued functions associated to the plant and the compensator; compare [17]
for a polynomial version. We first prove the lemma below, using the well-
known fact (see for instance [11, p. 650]) that a square matrix

5

— All A12
A2l A22

in which the block A,, is invertible, is invertible itself if and only if the Schur
complement A}, — A, Ap'A,, is invertible.

LEMMA 24, The closed-loop connection of a linear system
x(t) = Ax(t) + Bu(t), (2.18)
y(t) = Cx(1) (2.19)

with a compensator of the form (2.4)~(2.5) is stable if and only if for each s in
C with Re s > 0 the two subspaces

(2.20)

kersI—A 0 0 -B
-C 0 I 0
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and

kel © SI-F =G 0
0 -H ] I

(2.21)
are complementary.

Proof. The closed-loop system matrix is

A = [A+B]C BH
¢ GC F

13 el VI T Sl

so that sI — A, is invertible for all s in the closed right half plane if and only
if the matrix

sSI—A 0 0 -B
0 sI-F -G 0
-C 0 I 0
0 -H —] I

has the same property. This in turn is equivalent to the condition in the
statement of the lemma. L

The subspaces Z(s) defined analogously to (2.12) and #(s) defined as in
(2.14) are simply the projections of the two subspaces (2.20) and (2.21) above
on the product of the input space # and the output space % The characteri-
zation of closed-loop stability in terms of complementarity is now proved as
follows.

LEMMA 2.5. Let a plant (2.18)-(2.19) and a compensator (2.4)~(2.5) be
given, and suppose that both are stabilizable and detectable. Let P(s) and
#(s) denote the associated subspace-valued functions. Then the closed-loop
system is stable if and only if the subspaces P(s) and &(s) are complemen-
tary for all s in C with Re s > 0.

Proof. Tt follows from Lemma 2.3 in [8] that dim £(s) = dim # and
dim #(s) = dim % for all s in the closed right half plane. To prove
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complementarity of the two subspaces, it therefore suffices to show that they
intersect only in zero. Suppose to the contrary that, for some A with Re

A 2 0, the intersection Z(X) N #(A) contains a nonzero vector [Z] By
definition, this means that there exists an x such that

M -4 o0 -B||*
[ <ty ][y}=0 (2.22)
and a z such that

[/\I};—F _.]c 31][ }20, (2.23)

But then obviously

AL-A 0 0 -—B 0 AMl-F -G
eker[ —C 0 I Olﬂker[o g iy

~ O

|

(2.24)

e n ®

which shows, by the previous lemma, that the closed-loop system is not
stable. The converse part of the proof is obtained by reversing this reasoning.
i

REMARK 2.6.  If the plant is not strictly proper and is given by state-space
parameters (A, B,C, D), then the description of £(s) is modified in the
obvious way, and () is given by kerl —=I D]. The statement of the above
lemma is then changed to: the closed-loop system is stable and well-posed if
and only if the subspaces 2(s) and #(s) are complementary for all s in the
extended closed right half plane (cf. [17]).

3. THE BLOWUP

In order to handle higher-order interpolation conditions, it is convenient
to introduce the concept of the blowup of a subspace-valued function. We
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begin by defining blowups of matrix-valued functions. Let an analytic func-
tion M(s) be given that is defined on some domain Q of the complex plane
and that takes values in the set of linear mappings from a linear space 2 to a
linear space Z. If x(s) is an analytic vector-valued function taking values in
&, then the first r coefficients in the Taylor series development of M(s)x(s)
around any point A € ) are determined by the first r coefficients in the
Taylor series development of x(s) around A. The dependence is of course
linear, and we denote the associated mapping by M!"X(A), which is a linear
mapping from the r-fold product 27 to the r-fold product %'". By repeating
this construction at every A € £ we obtain a new operator-valued function
M!")(s), which we shall call the rfold blowup of M(s). An explicit expression
for M'"I(s) in terms of M(s) is given by

M(S) 0 e e 0
M'(s) M(s) O :
MU (s) = - 0
1
F“:I—)TM“"”(S) e MI(s) M(s)

(3.1)

This clearly shows that M!"(s) will again be an analytic operator-valued
function. We shall sometimes use the notation [ M(s)]l"} instead of M{"I(s),
in particular when M(s) is a partitioned matrix, and in such cases even write
[ M()]FI(A) instead of MITI(A).

Now we come to defining blown-up versions of the various subspace-
valued functions that were introduced above. For the functions £(s) and
#(s) defined in (2.12) and (2.14) respectively, these can be defined via
either image or kernel representations as follows:

PUN(s) = ker Pl')(s) = im Pl")(s), (3.2)

and similarly for #(s). It follows from Lemmas 3.3 and 3.4 below that this
definition is unambiguous. The subspace-valued function #(s) defined in
(2.13) requires more care because it has singularities. Note that we may write

(3.3)

A(s) = err[SIEA o ‘OB],
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where I1 denotes the natural projection from X ¥ X Z to ¥ X %. We
now define .#1"X(s) by

[r] [r]
A7)(s) = I ker SIE A 0 —B] L A (w) = im[(l)] _

(3.4)

A matrix function M(s) will be called a kernel representation of the sequence
of subspace-valued functions .#17I(s) if ker M!"i(s) =.#1"I(s) for all s in the
considered domain. It has to be shown that such representations do indeed
exist; this will be done in Lemma 3.9 below.

We start the description of the properties of blowups with a simple but
crucial product formula.

LEMMa 3.1. For any matrix functions T(s) € RP*™(s) and S(s) €
R™*4(s) and anyr=12,..., one has

(T$)"(s) = TU(s)SI7(s). (3.5)

Proof. This is immediate from the definition, since T(sXS(s)x(s)) =
(TSXs)x(s). One may also give a more computational proof based on the
expression (3.1), using the Leibniz rule for derivatives of products:

1 1 &
F(TS)U")(S) T g( )T(j)( )q(l\ (s)

Z T‘”( ) 7S (). (3.6)

(k )
m

The blowup does not commute with matrix partitioning; indeed, if A and
B are linear mappings from £ to Z and from % to .Z respectively, then
[A B]'"! is a mapping from (X )" to 2", but [ A"l BI"] is a mapping
from 2" X Z" to Z". To get a proper correspondence we need an operator
from 2" X Z7 to (X %) that we shall call the mingling operator. It is
defined by

Mi:(xp, .o, x,, Yy, een y) = (2, 4y, X, Y,). (3.7)
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We shall use the mingling operator between various spaces and even use its
obvious generalization to products of more than two factors, employing the
same symbol Mi every time; this rather severe abuse of notation should cause
no confusion. The following lemma is given without proof.

LEMMA 3.2. For matrix functions A(s) and B(s) with the same domain

space, we have
A" _ A7)
B(S)] = MI[BM(S) } (3.8)

For matrix functions A(s) and B(s) with the same codomain space, we have

[A(s) B(s)]" =[a(s) BY(s)]Mi . (3.9)

LEmMA 3.3. Consider matrix functions T(s) and T(s) that are analytic
on a neigborhood of a given point A € C U {=}. Let r be any positive integer.
If T(X) has full column rank, then the same holds for T'"\(X), and if T(A)
has full row rank, then the same is true for TUA). If moreover ker
T(s) =im T(s) for all s in a neighborhood of A, then ker TUX)) =
im TUI(A) for all r € N.

Proof The first claim is immediate from the matrix form of T!")(s) and
T (s) [see (3.D]. If now ker T(s) = im T(s) for all s in a neighborhood of
A, then T(s)T(s) =0 so that TUNs)TI")(s) = 0 which implies that im
TUI(A) C ker TI7)(A). By the full-rank assumptions and because dim ker
T(A) = dimim T(A), we also have dim ker TI'(A) = dim im TI")(A), so that
actually equality must hold. "

LEmMMA 34. Let T(s) and To(s) be RH, matrices. If im T\(s) =
im Ty(s) for s € C* and both T(s) and Ty(s) have full column rank
everywhere on C*, then im T"(s) = im T}"Xs) for all s € C*. An analo-
gous statement is true for kernel representations.

Proof. Under the stated conditions, there exists an RH.-unimodular
matrix U(s) such that T\(s) = To(s)U(s) for all s € C* (this is essentially
the standard uniqueness theorem for right-coprime factorizations). From this
we get TI"I(s) = T{Us)UN(s), where Ul)(s) is nonsingular for all s € C*
by the previous lemma, and the claim follows. [ ]
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It is well known that interpolation conditions for matrix-valued functions
can often be expressed as divisibility conditions (cf. for instance [2, Chapter
10D). The connection between blown-up matrix functions and divisibility is
brought out by the following proposition.

ProposiTioN 3.5.  Let Q(s) € RHZ*? and H(s) € RHZ*P, and sup-
pose that H(s) is nonsingular. Under these conditions, Q(s) is right divisible

by H(s), in the sense that the matrix function Q(s)H™'(s) belongs to
RH P, if and only if

ker QU"1(s) o ker HI")(s) (3.10)

for all s € C* and all r € N. The conclusion in fact already holds if the
inclusion (3.10) is satisfied at each zero \ of H(s) in C*, and with r equal to
the multiplicity of that zero.

For the proof it is convenient to introduce the ring A(A) of functions

analytic in a neighborhood of A € C U {2}, and the A(A)-module Z (H; A)
defined by

Z(H;)) ={feAP(N) | (s — A) "H(s)f(s) € AP(X)}, (3.11)

where s” should be read instead of (s — A)™" if A = o¢; the same convention
will be used below. We now first prove the following lemma.

LEMMA 3.6. In the situation of the above proposition, Q(s) is right-
divisible by H(s) if and only if

Z(Q:A) DZ(H;A) VreC'.reN. (3.12)

Proof. 1t is clear that the condition is necessary. Assume now that (3.12)
holds. We shall show that Q(s)H '(s)f(s) belongs to RHI for every
f € RH?. Take such an f, and suppose to the contrary that Q(s)H ™'(s)f(s)
would have a pole at some point A € C*. We can write H™'(s)f(s) =
(s =077g(s) for some r €N and some g€ RHZ. Then H(s)s —
M "g(s) = f(s) so that g belongs to Z.(H; A) and hence to Z.(Q; A) by
(3.12). But then Q(s)H (s)f(s) = Q(s)s — A)""g(s) cannot have a pole at
A, and we have a contradiction. B
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The proof shows that it is sufficient to consider only the zeros of H(s),
and to take r equal to the multiplicity of the zero. The proof of the
proposition is now easy.

Proof (of Proposition 3.5) Given a matrix function M(s), direct calcula-
tion shows that

(3.13)

So the claim in the proposition is immediate from the above lemma. |
We note the following corollaries of the proposition.

CoroLLARY 3.7. Let Q(s) € RHI*?(s) and Q,(s) € RHLP(s), and
suppose that Q,(s) has full generic row rank. Under these conditions, there
exists a matrix function F(s) € RH2*!(s) such that Q(s) = F(s)Qu(s) if
and only if

ker QI"1(s) D ker QY1(s) (3.14)

foradlse C* and r € N.

Proof. The necessity of the condition is immediate from Lemma 3.1. To
show the sufficiency, write (after a column permutation, if necessary) Q,(s) =
[Q51(s) Qu(s)] where Q,(s) is nonsingular, and partition Q,(s) corre-
spondingly as [Q,,(s) Q,(s)]. From (3.14) it follows that ker Q{{(s) >
ker QL1(s). By the proposition, this implies that there exists a matrix function
F(s) € RH2*! such that Q,,(s) = F(s)Q,,(s); it remains to prove that also
Q12(s) = F(5)Q,,(s). Take a rational vector x,(s) of length p — I, and
define x,(s) = — Q3! (s)Qy(s)x,(s). Applying (3.14) with r =1, we then
have Q,(s)x,(s) = —Qp()x,(s) = —F()Qq(s)x,(s) = F(s)Qgs(s)x,(s).

|

Because x,(s) was arbitrary, the desired conclusion follows.

COROLLARY 3.8. Let Q,(s) € RH*?(s) and Q,(s) € RHLP(s), and
suppose that both matrix functions have full generic row rank. Under these
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conditions, there exists an RH  -unimodular matrix function U(s) such that

Q\(s) = U(s)Q,(s) if and only if m =1 and

ker Q")(s) = kerQY(s) (3.15)

foralseC* andr e N.

Proof. The necessity follows from Lemma 3.1 and Lemma 3.3. Assume
now that (3.15) holds. From the previous corollary it follows that there exist
RH.,-matrix functions F\(s) and F,(s) such that Q,(s) = F,(s)Q,(s) and
Qs(s) = Fi()Q(s). We get Q,(s) = F\(s)F5(s)Q,(s), and since Q,(s) is
surjective as a mapping from C?(s) to C™(s), this implies that F,(s)F,(s) = L.
In the same way we have F,(s)F(s) = I and it follows that both F(s) and
Fy(s) are unimodular. L

LEMMA 39. Consider a set of state-space parameters (¥, ¥, %;
A, B,C, D) and suppose that the pair (C, A) is detectable. Let I1 denote the
natural projection from XY X ¥ to ¥ X #. For each r=1,2,...,
define a subspace-valued function #'"\(s) by

[r] [r]
AN(s) =TIl ker[SI E A0 _B] , AU =) = im[D] .

-1 D I
(3.16)
Then we can find an RH . function M(s) such that
AN s) =kerMU)(s)  WseC*, reN. (3.17)

Moreover, if M\(s) and My(s) are both matrix functions of full generic row
rank satisfying (3.17), then there exists an RH  -unimodular matrix U(s)
such that My(s) = U(s)M (s).

Proof. Write C(sI — A)™' = D Y (s)N(s) where D(s) and N(s) are
left-coprime matrices over RH,. By the coprimeness and the detectability
assumption, we have

im[SIEA] = ker[~N(s) D(s)] (3.18)
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for all s € C with Re s > 0. Now define
M(s) = [-N(s) 1_3(3)][ —01 g] = [-D(s) -N(s)B + D(s)D].
(3.19)

Note that we may write

N L R

whereas it follows from (3.18) by Lemma 3.4 that

_ {r] ~ _ ,
im[SIC A] = ker[—N(s) D(s)]{ ! (3.21)

Therefore, we have
(r] o B\ - NG
A7) = ~1 D ker[—N(s) D(s)]

~tef [ Bl 0, B])

=ker([—1\7(s) 15(8)][_01 g])[rl=kerM['](s) (3.22

for all s € C with Re s > 0. Concerning the point at infinity, we have

~ - r rl
ker[—N(OO) D(oo)][ g im[(l)] . (3.23)

This equality follows by taking limits in both sides of (3.21); note that the
matrix [~ N(s) D(s)]") has full row rank for all s € C* by Lemma 3.3, so
that the subspace-valued function ker[ = N(s) D(s)]I"! is continuous on C™.
It is now immediate from the definition (3.19) that the equality (3.17) also
holds at s = . The final claim about the uniqueness of solutions is immedi-
ate from (3.17) by Corollary 3.8. |
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4. INTERPOLATION CONDITIONS FOR THE REGULATOR
PROBLEM

In this section we shall show how the regulator problem can be viewed as
an interpolation problem. An important role is played by the relation between
the subspace-valued functions #(s) and &?(s) that were introduced in (2.13)
and (2.12). Note that .#(A) = 2(1) for all A that are not eigenvalues of Ay
(ie. poles of the exosystem), and that in general we have 2(s) C.#(s).
Unlike Z(s), the function .#(s) has singularities, in the sense that it is not of
constant dimension on the complex plane. In particular it can therefore not
be considered as a mapping from the complex plane to any Grassmannian.
The way in which .#(s) plays a role in describing the regulation property is
most easily seen in the case in which the eigenvalues of A,, are simple (i.e.
when A,, is diagonalizable). We shall treat this case first in a proposition,
and then make the necessary adjustments to handle the general case.

PrOPOSITION 4.1. In the regulator problem as defined in Section 2,
assume that Ay, is diagonalizable. A controller is then a solution to the
regulator problem with internal stability if and only if the associated
subspace-valued function € (s) is such that the interpolation condition

(1) NA(A) € {0} X 7 (4.1)
holds for all eigenvalues A of Ay, and the complementarity condition
F(A) OP(N) =% X U (4.2)
holds for all A € C*.

Proof. By Lemma 2.5, the complementarity condition is equivalent to
internal stability of the combination of plant and compensator. If internal
stability holds, the unstable eigenvalues of the closed-loop system matrix A,
must coincide with the eigenvalues of A,,. The regulation property will be
satisfied if and only if the characteristic modes corresponding to these
eigenvalues have zero output values associated to them. Because of the
assumption that A, has only simple eigenvalues, it suffices to consider
solutions of the form x(t) = xye™, z(t) = zye™, y(t) = y e, u(t) = uye?.
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Substituting the assumed solutions in (2.1)-(2.5) and equating the coeffi-
cients of e* results in the equations

e

AM—A 0 —B

[Pl | P (43)
Luo—

M-F -G 0 Kl

[ . "] —1] yo | =0, (4.4)
Uy

where A and C are as in (2.10) and

-]

So the regulation property holds if and only if the equations (4.3)~(4.4) only
allow solutions with y, = 0. But this in turn is equivalent to (4.1). ]

We now proceed to the general (higher-multiplicity) version of the above
proposition. For ease of notation, we introduce

7= {[2]ls=o} )

and denote the natural projection from 2 X % to % by K = [I 0], so that
= o
.%——kerK——lm[I]. (4.6)

Regarding K as a constant matrix-valued function, we can also consider K!"]
which is simply a block-diagonal matrix with K on the diagonal entries, and
Z1"V = ker K!"1. By the multiplicity of an eigenvalue of a matrix we mean the
length of the longest Jordan chain associated with that eigenvalue.

THEOREM 4.2. A controller of the form (2.4)—(2.5) is a solution to the
regulator problem with internal stability as formulated in section 2 if and
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only if the associated subspace-valued function %(s) is such that the higher-
order interpolation condition

Zl(A) Nl (2) ot (4.7)

holds for all eigenvalues X of A,y of multiplicity r, and the complementarity
condition (4.2) holds for all A € C*.

Proof. The analysis is the same as in the proposition above, except that
we now have to take into account (for an eigenvalue A of A,, of multiplicity
r) solutions of the form

x(t) = (xg +xt + o Hx,_ 17 )eM

and similarly for z(#), y(t), and u(t). Substituting these solutions in
(2.1)-(2.5) and equating the coefficients of t*e* for k =0,1,...,r =1
results in the following equations, where x” = col(x,_, ..., x,) and y" and
u" are defined likewise, and where we use the mingling operator of (3.7):

i r) Ed
sI—A 0 -B N
"¢ o 0] (A) Mi Y’ =0, (4.8)
u’
r (r] (2]
sI—F -G 0] 170
H J —I} (A)Mi|y" | =0. (4.9)
s

The regulation property holds if the above equations imply that y, = - =
y,_, = 0, that is, if (4.7) holds. Conversely, if (4.7) is not satisfied, then it
follows as in the proof of Proposition 4.1 that the given controller does not
solve the regulator problem. |

The above formulation of the regulator problem shows that a necessary
condition for the problem to be solvable is that at each exosystem pole A,
there should exist a subspace % complementary to £(A), which moreover
should be such that & N.# C.#. This observation can be used to derive
“local necessary conditions” for the solvability of the regulator problem.
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5. PARAMETRIZATION OF ALL REGULATORS

As an application of the interpolation conditions found in the previous
section, we shall here consider the parametrization of regulators. We shall do
this under the following assumption, additional to the standing assumptions
(A1)-(A3):

(A4) For every eigenvalue A of A,,, the matrix

Al — A, -B,
o} 0

has full column rank.

This assumption implies that the number of outputs is at least equal to the
number of inputs, whereas it is well known [18, Chapter 8] that the regulator
problem can only be well posed if the number of outputs is at most equal to
the number of inputs. One may therefore say that (A4) essentially limits one
to the case in which the number of control inputs is equal to the number of
regulated outputs. The assumption requires that the plant zeros do not
coincide with the exosystem poles, which is a well-known condition in
connection with the regulator problem [18, Theorem 8.3; 3, Corollary 5.2-2].
A geometric interpretation can be given as follows.

LEMMA 5.1.  Consider the system (2.1)-(2.3), with associated subspace-
valued function P(s) and under the standing assumptions (A1)-(A3).
Assumption ( A4) then holds if and only if

P(N) Nz = {0} (5.1)

for each eigenvalue A of Ay,.

Proof. Take an eigenvalue A of A,,. First suppose that (5.1) holds, and
let x and u be such that

[,\1 ;lAu —(fl][z] _o. (5.2)
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We then obviously have

A=A, 0 —B{]|* 3
¢ -1 o |[9]7° (5-8)

which implies that
0
[ u] eP(A).

By (5.1) it then follows that u = 0, and by the detectability assumption (A2)
we then also have x = 0 from (5.3). The converse is proved by reversing this
reasoning, B

The parametrization of regulators will be given through an image repre-
sentation for #(s). First, let P(s) be a kernel representation for Z(s). Since
P(s) has full row rank everywhere on C*, we can find a matrix P(s) such

that ( ) is RH-unimodular. Write
P(s

~h

[ P(())] = [B(s) P(s)]; (5.4)

then P(s) is an image representation of 2(s). A matrix C(s) is an image
representation for a stabilizing compensator #(s) it and only if P(s)C(s) is
RH_ -unimodular; indeed, this is equivalent to £2(s) = kerP(s) and &(s) =
im C(s) being complementary for all s € C*. Since an image representation
is only determined up to right multiplication by unimodular matrices, we may
without loss of generality even require that P(s)C(s) = I. Let C o(s) be a
particular solution to this equation, and let C(s) be any solutlon then
P(sXC(s) — Cy(s)} =0, s0

C(s) — Cy(s) = [PI(S) P(S)]LI;)(( ))}{C(S) - Co(s)}

= P(s) P,(s){C(5) = Co(5)}, (5:3)
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which shows that C(s) is of the form
C(s) = Cy(s) — P(s)Q(s) (56)

for some RH_ matrix Q(s) Conversely we see that any matrix of this
form satisfies the equation P(s)C(s) = I. Here we have, of course, the
Kudera-Youla parametrization of all stabilizing compensators [12, 19]. We
now want to refine this parametrization in order to find all stabilizing
compensators that solve the regulation problem. For this we need the
following lemma.

LEMMA 5.2. Let # be a vector space, and let &, P, and M be
subspaces of # such that # ® € =¥ and P C.H. Denote the projection
onto & along P by I1Z. We then have

enag=174. (5.7)

Proof. If w e & NA, then w = 17w € [17.#. Conversely, suppose
that w € IIZ.#. Then certainly w € &, and also there is an x €.4 suc_h that
= IIZx. Because (I — [1Z)x €P C.#, we have w =x — (I — [IZ)x €
M. |

In view of the lemma, the regulation requirement (4.7) may be written in
the form

20 e, (5:8)

where H‘gm denotes the projection along !"! onto &1\ If C(s) is chosen
such that P(s)C(s) = I, then

sl = (el (5.9)
and so we can write Equation (5.8) as

[Cﬁ][r]kerl\/?[r] C ker K", (5.10)

At this point we need a more precise description of the relation between
M(s) and P(s). Such a description can be given on the basis of the lemma
below.
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LEMMA 5.3.  Suppose that the matrix function Q(s) € RHETm>*d+m) g
of the form

Quls) le(s)] (5.11)

Q) = [ 0 QOw(s)

and has full column rank for all s € C*, so that in particular the matrix
Qu(s) has full column rank for all s € C*. Let P(s) = [P(s) Py(s)] €
RHY D) gnd P (s) € RHED*K be kernel representations for the
subspace-valued functions given by im Q(s) and im Q,(s) respectively.
Under these conditions, there exists a square and nonsingular matrix function
H(s) € RH&DxG=D o oh that

P\(s) = H(s)Pyy(s). (5.12)

Moreover, the nontrivial elementary divisors of H(s) are the same as those of

Qas(s).

Proof. Because of the full-column-rank assumption on Q(s), there exists
a unimodular matrix U(s) of size k + m such that

Ouls) Quls)| Il+,,,]
[ 0 ng(s)]—[ N B CR L)

Un(s)  Up(s)
Usp(s)  Ug(s)

Note that, in this partitioning, U, (s) has size (k — ) X k. Because the matrix
[P(s) Py(s)] is determined only up to left multiplication by an RH,-
unimodular matrix, we may for the purposes of the proof set

[Pl(s) Pz(s)] =[U21(3) Uzz(s)]- (5.14)

Now, let Q¢(s) be such that [Qy(s) Q,,(s)]is unimodular. Then there exists
a unimodular matrix V(s) such that

Vi(s)
Vo (s)

I 0
[Qo(s) Qu(s)]‘_‘[o Ik—l]’ (5.15)
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and we may set
Py(s) = Vi(s). (5-16)
Define
H(s) = Uy(s)Qy(s)- (5.17)

Because U, (s)Q,,(s) = 0 by (5.13), we then have

Vi(s)

Pi(s) = Uy(s) = sz(s)[Qo(S) Qu(s)] V,(s)

= Uy (s)Qo(s)Vi(s) = H(s) Pyy(s). (5.18)
Finally note that

[Un(s) Upa(s) || Qo(s)  Qunls)  Qua(s) _ Un(s)Qo(s)  Tiin
Upi(s)  Us(s) 0 0 Qa2(5) Uy (5)Qo(s) 0 |

(5.19)
The nontrivial elementary divisors of the left-hand side are equal to those of

Q3:(s), since [Q(s) Q,,(s)] is unimodular, whereas on the right-hand side
they are equal to those of U, (s)Qy(s) = H(s). |

In the context of the regulation problem, this leads to the following.

LEMMA 5.4. Let P(s) be a kernel representation of the subspace-valued
function P(s) defined in (2.12), and let M(s) be a kernel representation of
the sequence of subspace-valued functions .#'"(s) defined_in (3.4). Then
there exists a square and nonsingular RH ,-matrix function H(s) such that

M(s) = H(s)P(s). (5.20)

Moreover, the nontrivial elementary divisors of H(s) are the same as those of
sl — Ay,
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Proof. A kernel representation for the sequence .#1"I(s) is constructed
as follows (cf. the proof of Lemma 3.9). By the detectability assumption (A2),
we can find RH,, matrices N (s), Ny(s), and D(s) such that

sI — Ay, —Ap,
kerf[~Ny(s) D(s) —Ny(s)] =im| -C, -c, Vs e C*.
0 sI — Ay
(5.21)
We then set
3 ) ) ) [0 —B,
M(s) = [-Ny(s) D(s) -§()]|1 o
0o 0
=~ A 0 "Bxﬂ
= [-Ni(s) D(s)][I o (5.22)

On the other hand, a kernel representation P(s) is constructed by finding
N,(s) and D,(s) such that

_An

- - sI
ker[——NO(s) D(,(s)] = im[S B Vs e C' (5.23)

‘1

and setting

B(s) = [~ No(s) 5‘,(3)][;’ o } (5.24)

It follows from Lemma 5.3 that there exists an RH, matrix H(s) with the
properties as stated in the lemma such that

[-Ni(s) D(s)] = H(s)[-No(s) Dy(s)]. (5.25)

From this together with (5.22) and (5.24), the claim in the lemma follows for
the matrix functions M(s) and P(s) constructed above. Lemma 3.9 shows
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that the same conclusion must hold for any representations M(s) and P(s)
that satisfy the specified conditions. B

Using this lemma, we can rewrite (5.10) as

r ~~1lr] ~
[cP]  ker[ HF] " < ker RV (5.26)

Because P(s) has full row rank everywhere on C*, the same holds for Plrl(s)
(Lemma 3.4) and so (5.26) is equivalent to

Cllker HU'l € ker KI") (5.27)

which is the same as

= U7l
( KC) | ker HI7] = O. (5.28)

Because the matrix function H(s) is nonsingular, the same holds for H 1Ur)(s),
and so the subspace-valued function ker HI"!(s) takes the value {0} almost
everywhere on C*. Consequently, the inclusion (5.27) is trivial almost every-
where. The only interesting points are those at which H(s) has a zero, which
by the lemma above are exactly the exosystem _poles. The lemma also
guarantees that the multiplicities ‘of the zeros of H(s) are the same as the
multiplicities of the exosystem poles, so that we may reformulate the condi-
tion (5.28) as tollows:

(RC)" () lrsitiy =0 forall Ain o ( Ayy) of multiplicity . (5.29)

Now, assume that the regulator problem with internal stability is solvable,
and let Cy(s) be an image representation of the subspace-valued function
associated to a particular solution. We know from the Kucera-Youla
parametrization that any controller achieving internal stability can be repre-
sented by C(s) = C,(s) — P(s)Q(s) where Q(s) is an arbitrary RH,. matrix
of the appropriate size. It is clear from (5.29) that such a controller will also
be a solution to the regulator problem if and only if

Kp {r] A) D gty = 0 for all Ain o( A,,) of multiplicity r.
( Q) ker HIT)(A) 22 plicity
(5.30)
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If we assume now that assumption (A4) holds, so that KP(A) is injective (cf.
Lemma 5.1), then the same holds for (KP)")(A), and the condition (5.30)
simplifies to

QUIA) e sitiny = 0 forall Ain o ( Ay) of multiplicity r. (5.31)

But then we also have

ker HU')(s) c ker QU)(s) Vs e C*, (5.32)

since the inclusion is trivial for those s that are not eigenvalues of A,,. By
Lemma 3.5, (5.32) implies that

(s) = W(s) H(s) (5.33)

for some RH,, matrix W(s). Conversely, it is clear that any matrix of the form

Cy(s) — P(s)W(s)H(s) provides a solution to the regulator problem. There-
fore, we have proved the main result of this section, which gives a
parametrization of all controllers of the form (2.4)-(2.5) that achieve regula-
tion with internal stability.

THEOREM 5.5. Consider the system (2.1)~(2.3) under assumptions
(A1)-(A4). Let P(s) and P(s) denote image and kernel representations
respectively for the subspace-valued function ‘/’7’(») associated to the plant as
defined by (2.12). Assume that the regulator problem with internal stability is
solvable, and let C(s) be an image representation of the function '(s)
associated as in (2.14) to a particular solution, normalized such that
P(s)C,(s) = I. Let H(s) be as in Lemma 5.4. Under these conditions, the
general form of an image representation C(s) of a solution of the regulator
problem with internal stability is given by

C(s) = Cy(s) — P(s)¥(s)H(s), (5.34)
where W(s) is an arbitrary element of RH 2P,

Comparing this with the Kucera-Youla parametrization (5.6), we see that
the parametrization of regulators comes down to constraining the “central”
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compensator Cy(s) to be a regulator, and requiring that the parameter Q(s)
be right-divisible by the square matrix function H(s), which can be con-
structed from the problem data. Taking into consideration that the nontrivial
elementary divisors of H(s) coincide with those of the exosystem sI — Ay,
this result may be viewed as an instance of the internal model principle (see
in particular the version of [10]). For other parametrizations of all solutions to
the regulator problem, see for instance [7, 16, 1]. The parametrization given
above turns out to be particularly useful in connection with the robust
stabilization problem [6].
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